3.1902 \(\int \frac {(a+b x) (a^2+2 a b x+b^2 x^2)}{(d+e x)^2} \, dx\)

Optimal. Leaf size=75 \[ -\frac {b^2 x (2 b d-3 a e)}{e^3}+\frac {(b d-a e)^3}{e^4 (d+e x)}+\frac {3 b (b d-a e)^2 \log (d+e x)}{e^4}+\frac {b^3 x^2}{2 e^2} \]

[Out]

-b^2*(-3*a*e+2*b*d)*x/e^3+1/2*b^3*x^2/e^2+(-a*e+b*d)^3/e^4/(e*x+d)+3*b*(-a*e+b*d)^2*ln(e*x+d)/e^4

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {27, 43} \[ -\frac {b^2 x (2 b d-3 a e)}{e^3}+\frac {(b d-a e)^3}{e^4 (d+e x)}+\frac {3 b (b d-a e)^2 \log (d+e x)}{e^4}+\frac {b^3 x^2}{2 e^2} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*(a^2 + 2*a*b*x + b^2*x^2))/(d + e*x)^2,x]

[Out]

-((b^2*(2*b*d - 3*a*e)*x)/e^3) + (b^3*x^2)/(2*e^2) + (b*d - a*e)^3/(e^4*(d + e*x)) + (3*b*(b*d - a*e)^2*Log[d
+ e*x])/e^4

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {(a+b x) \left (a^2+2 a b x+b^2 x^2\right )}{(d+e x)^2} \, dx &=\int \frac {(a+b x)^3}{(d+e x)^2} \, dx\\ &=\int \left (-\frac {b^2 (2 b d-3 a e)}{e^3}+\frac {b^3 x}{e^2}+\frac {(-b d+a e)^3}{e^3 (d+e x)^2}+\frac {3 b (b d-a e)^2}{e^3 (d+e x)}\right ) \, dx\\ &=-\frac {b^2 (2 b d-3 a e) x}{e^3}+\frac {b^3 x^2}{2 e^2}+\frac {(b d-a e)^3}{e^4 (d+e x)}+\frac {3 b (b d-a e)^2 \log (d+e x)}{e^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 114, normalized size = 1.52 \[ \frac {3 \left (a^2 b e^2-2 a b^2 d e+b^3 d^2\right ) \log (d+e x)}{e^4}+\frac {-a^3 e^3+3 a^2 b d e^2-3 a b^2 d^2 e+b^3 d^3}{e^4 (d+e x)}-\frac {b^2 x (2 b d-3 a e)}{e^3}+\frac {b^3 x^2}{2 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*(a^2 + 2*a*b*x + b^2*x^2))/(d + e*x)^2,x]

[Out]

-((b^2*(2*b*d - 3*a*e)*x)/e^3) + (b^3*x^2)/(2*e^2) + (b^3*d^3 - 3*a*b^2*d^2*e + 3*a^2*b*d*e^2 - a^3*e^3)/(e^4*
(d + e*x)) + (3*(b^3*d^2 - 2*a*b^2*d*e + a^2*b*e^2)*Log[d + e*x])/e^4

________________________________________________________________________________________

fricas [B]  time = 1.04, size = 172, normalized size = 2.29 \[ \frac {b^{3} e^{3} x^{3} + 2 \, b^{3} d^{3} - 6 \, a b^{2} d^{2} e + 6 \, a^{2} b d e^{2} - 2 \, a^{3} e^{3} - 3 \, {\left (b^{3} d e^{2} - 2 \, a b^{2} e^{3}\right )} x^{2} - 2 \, {\left (2 \, b^{3} d^{2} e - 3 \, a b^{2} d e^{2}\right )} x + 6 \, {\left (b^{3} d^{3} - 2 \, a b^{2} d^{2} e + a^{2} b d e^{2} + {\left (b^{3} d^{2} e - 2 \, a b^{2} d e^{2} + a^{2} b e^{3}\right )} x\right )} \log \left (e x + d\right )}{2 \, {\left (e^{5} x + d e^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b^2*x^2+2*a*b*x+a^2)/(e*x+d)^2,x, algorithm="fricas")

[Out]

1/2*(b^3*e^3*x^3 + 2*b^3*d^3 - 6*a*b^2*d^2*e + 6*a^2*b*d*e^2 - 2*a^3*e^3 - 3*(b^3*d*e^2 - 2*a*b^2*e^3)*x^2 - 2
*(2*b^3*d^2*e - 3*a*b^2*d*e^2)*x + 6*(b^3*d^3 - 2*a*b^2*d^2*e + a^2*b*d*e^2 + (b^3*d^2*e - 2*a*b^2*d*e^2 + a^2
*b*e^3)*x)*log(e*x + d))/(e^5*x + d*e^4)

________________________________________________________________________________________

giac [B]  time = 0.16, size = 164, normalized size = 2.19 \[ \frac {1}{2} \, {\left (b^{3} - \frac {6 \, {\left (b^{3} d e - a b^{2} e^{2}\right )} e^{\left (-1\right )}}{x e + d}\right )} {\left (x e + d\right )}^{2} e^{\left (-4\right )} - 3 \, {\left (b^{3} d^{2} - 2 \, a b^{2} d e + a^{2} b e^{2}\right )} e^{\left (-4\right )} \log \left (\frac {{\left | x e + d \right |} e^{\left (-1\right )}}{{\left (x e + d\right )}^{2}}\right ) + {\left (\frac {b^{3} d^{3} e^{2}}{x e + d} - \frac {3 \, a b^{2} d^{2} e^{3}}{x e + d} + \frac {3 \, a^{2} b d e^{4}}{x e + d} - \frac {a^{3} e^{5}}{x e + d}\right )} e^{\left (-6\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b^2*x^2+2*a*b*x+a^2)/(e*x+d)^2,x, algorithm="giac")

[Out]

1/2*(b^3 - 6*(b^3*d*e - a*b^2*e^2)*e^(-1)/(x*e + d))*(x*e + d)^2*e^(-4) - 3*(b^3*d^2 - 2*a*b^2*d*e + a^2*b*e^2
)*e^(-4)*log(abs(x*e + d)*e^(-1)/(x*e + d)^2) + (b^3*d^3*e^2/(x*e + d) - 3*a*b^2*d^2*e^3/(x*e + d) + 3*a^2*b*d
*e^4/(x*e + d) - a^3*e^5/(x*e + d))*e^(-6)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 149, normalized size = 1.99 \[ \frac {b^{3} x^{2}}{2 e^{2}}-\frac {a^{3}}{\left (e x +d \right ) e}+\frac {3 a^{2} b d}{\left (e x +d \right ) e^{2}}+\frac {3 a^{2} b \ln \left (e x +d \right )}{e^{2}}-\frac {3 a \,b^{2} d^{2}}{\left (e x +d \right ) e^{3}}-\frac {6 a \,b^{2} d \ln \left (e x +d \right )}{e^{3}}+\frac {3 a \,b^{2} x}{e^{2}}+\frac {b^{3} d^{3}}{\left (e x +d \right ) e^{4}}+\frac {3 b^{3} d^{2} \ln \left (e x +d \right )}{e^{4}}-\frac {2 b^{3} d x}{e^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(b^2*x^2+2*a*b*x+a^2)/(e*x+d)^2,x)

[Out]

1/2*b^3/e^2*x^2+3*b^2/e^2*a*x-2*b^3*d/e^3*x-1/e/(e*x+d)*a^3+3/e^2/(e*x+d)*a^2*b*d-3/e^3/(e*x+d)*a*b^2*d^2+1/(e
*x+d)*b^3*d^3/e^4+3*b/e^2*ln(e*x+d)*a^2-6*b^2/e^3*ln(e*x+d)*a*d+3*b^3*d^2/e^4*ln(e*x+d)

________________________________________________________________________________________

maxima [A]  time = 0.60, size = 117, normalized size = 1.56 \[ \frac {b^{3} d^{3} - 3 \, a b^{2} d^{2} e + 3 \, a^{2} b d e^{2} - a^{3} e^{3}}{e^{5} x + d e^{4}} + \frac {b^{3} e x^{2} - 2 \, {\left (2 \, b^{3} d - 3 \, a b^{2} e\right )} x}{2 \, e^{3}} + \frac {3 \, {\left (b^{3} d^{2} - 2 \, a b^{2} d e + a^{2} b e^{2}\right )} \log \left (e x + d\right )}{e^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b^2*x^2+2*a*b*x+a^2)/(e*x+d)^2,x, algorithm="maxima")

[Out]

(b^3*d^3 - 3*a*b^2*d^2*e + 3*a^2*b*d*e^2 - a^3*e^3)/(e^5*x + d*e^4) + 1/2*(b^3*e*x^2 - 2*(2*b^3*d - 3*a*b^2*e)
*x)/e^3 + 3*(b^3*d^2 - 2*a*b^2*d*e + a^2*b*e^2)*log(e*x + d)/e^4

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 123, normalized size = 1.64 \[ x\,\left (\frac {3\,a\,b^2}{e^2}-\frac {2\,b^3\,d}{e^3}\right )+\frac {\ln \left (d+e\,x\right )\,\left (3\,a^2\,b\,e^2-6\,a\,b^2\,d\,e+3\,b^3\,d^2\right )}{e^4}-\frac {a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3}{e\,\left (x\,e^4+d\,e^3\right )}+\frac {b^3\,x^2}{2\,e^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x)*(a^2 + b^2*x^2 + 2*a*b*x))/(d + e*x)^2,x)

[Out]

x*((3*a*b^2)/e^2 - (2*b^3*d)/e^3) + (log(d + e*x)*(3*b^3*d^2 + 3*a^2*b*e^2 - 6*a*b^2*d*e))/e^4 - (a^3*e^3 - b^
3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2)/(e*(d*e^3 + e^4*x)) + (b^3*x^2)/(2*e^2)

________________________________________________________________________________________

sympy [A]  time = 0.66, size = 102, normalized size = 1.36 \[ \frac {b^{3} x^{2}}{2 e^{2}} + \frac {3 b \left (a e - b d\right )^{2} \log {\left (d + e x \right )}}{e^{4}} + x \left (\frac {3 a b^{2}}{e^{2}} - \frac {2 b^{3} d}{e^{3}}\right ) + \frac {- a^{3} e^{3} + 3 a^{2} b d e^{2} - 3 a b^{2} d^{2} e + b^{3} d^{3}}{d e^{4} + e^{5} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b**2*x**2+2*a*b*x+a**2)/(e*x+d)**2,x)

[Out]

b**3*x**2/(2*e**2) + 3*b*(a*e - b*d)**2*log(d + e*x)/e**4 + x*(3*a*b**2/e**2 - 2*b**3*d/e**3) + (-a**3*e**3 +
3*a**2*b*d*e**2 - 3*a*b**2*d**2*e + b**3*d**3)/(d*e**4 + e**5*x)

________________________________________________________________________________________